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Abstract We present modified �-states of diatomic molecules by solving the radial
and angle-dependent parts of the Schrödinger equation for central potentials, such
as Morse and Kratzer, plus an exactly solvable angle-dependent potential Vθ (θ)/r2

within the framework of the Nikiforov–Uvarov (NU) method. We emphasize that
the contribution which comes from the solution of the Schrödinger equation for the
angle-dependent potential modifies the usual angular momentum quantum number �.
We calculate explicitly bound state energies of a number of neutral diatomic molecules
composed of a first-row transition metal and main-group elements for both Morse and
Kratzer potentials plus an angle-dependent potential. We also compare the bound state
energies for both potentials, taking into account spectroscopic parameters of diatomic
molecules and arbitrary values of potential constants.

Keywords Bound state solution · Modified �-state · Diatomic molecule ·
Nikiforov–Uvarov method · Central plus non-central potentials

1 Introduction

In recent years, theoretical and computational studies of molecular spectra have been
one of the most valuable tools for studying on atoms and molecules. The knowledge of
spectral analysis allows us to detect the presence of particular characteristics and essen-
tial components of matter. Especially, molecular spectra has been used to understand
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the motion of electrons in molecules as well as the vibration and rotation of the nuclei.
The chemical interactions between atoms and molecules assist to investigate the phys-
ical properties of individual molecules. In the light of this knowledge, dissociation
channels [1], centrifugal distortion constants [2], semiempirical dipole moment func-
tions [3] and other data about the rotation, vibration and electronic energy levels [4–7]
of diatomic molecules have been accurately determined by using theoretical methods.
Moreover, some quantum-mechanical calculations on rotational and vibrational energy
levels of diatomic molecules have been applied to the various problems in molecular
physics for a number of years [8]. The modified 1/N approach has been applied to
obtain energy levels of a rotational potential [9]. The formalism based on quantum
groups developed for nuclei has been applied equally well to molecules [10–12], and
concentrated on the rotation-vibration problem for a closed-shell molecule in a singlet
electronic state [13]. Arbitrary �-state solutions of the rotating Morse potential has
been investigated through the exact quantization rule method [14] and other algebraic
approaches and applications have been previously applied to rotational and vibrational
states of special potentials [15–20].

Before discussing the exactly solvable angle-dependent potential model, it is a ben-
eficial effort to give some information on a diatomic molecule. As is understood from
the description of molecular structure, a diatomic molecule differs from an atom in
having additional modes of motion caused by the ability of the molecule to rotate and
vibrate about its center of mass (CM) [21]. The simplest model for the motion of a
diatomic molecule is the harmonic oscillator which describes the vibrations of the
two atoms along a bond direction passing through the CM and the rigid rotor which
approximates the rotation of the molecule (see, Fig. 1). The rotation of a diatomic
molecule is composed of two nuclei having the atomic masses M1 and M2. To define
a reduced mass µ for a neutral molecule which is given in terms of the masses M1 and
M2, a precise value is available according to the following expression

µ = M1 M2

M1 + M2
. (1)

Instead of considering the rotation of atoms which can vibrate relative to each other
along the internuclear distance r , the rotation of a single mass which is called a reduced
mass µ at a fixed distance r from the axis of rotation can equally be preferred to deter-
mine the possible energy levels of a diatomic molecule.

In this study, the bound state energy levels are obtained by solving the Schrödinger
equation for the Morse [22] and Kratzer [23] molecular potentials together with an
exactly solvable angle-dependent potential, respectively,

VM (r, θ) = De

(
e−2a(r−re) − 2e−a(r−re)

)
+ Vθ (θ)

r2 , (2)

VK (r, θ) = −De + De

(
r − re

r

)2

+ Vθ (θ)

r2 , (3)

where subscripts M and K indicate the Morse and Kratzer potentials, respectively,
a controls the width of the potential and re is the equilibrium internuclear distance.
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Fig. 1 Representative
vibrational energy levels and
rotation of a diatomic molecule.
n is the vibration quantum
number and D0 is the chemical
dissociation energy of the lowest
(n = 0) vibrational level. The
internuclear distance r is
representatively shown in the
right-hand sight of figure

The quantity De is the electronic (or spectroscopic) dissociation energy of the diatomic
molecule and it differs slightly from the chemical dissociation energy D0, i.e., D0 =
De − h̄ωe/2, where ωe is called harmonic vibrational parameter [24,25]. Moreover,
the minimum value of VM,K (r) at r = re belongs to De. The second term in the right-
hand side of Eqs. 2 or 3 represents an angle-dependent potential and its uncovered
form is given as follows

Vθ (θ) = h̄2

2µ

(
A

sin2 θ
+ B

cos2 θ

)
. (4)

A and B are fixed constants or parameters obtained by some fitting procedure which
is based on experimental or theoretical results; it is important to emphasize that they
cannot depend on the angle θ . The factor h̄2/2µ is introduced in view of future conve-
nience. The potential given in Eq. 4 has been introduced for the first time by Makarov
et al. [26] classifying some non-central potential systems. The other forms of the
non-central potentials have been also studied in the relativistic and the non-relativistic
frameworks. In the non-relativistic case, the Schrödinger equation with non-central
potentials has been solved by using the Kustaanheimo–Stiefel transformation and the
energy of the levels for the ring-shaped potential has been obtained in a straightfor-
ward way from the one for the two-dimensional potential [27–30]. The accidental
degeneracy and hidden symmetry of the Hartmann potential have also been discussed
[31]. The Schrödinger equation for these types of angle-dependent potentials can be
exactly solved to obtain the bound state energies of a diatomic molecule. It is well-
known that the problem of exact solution of the Schrödinger equation for a number
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of special potentials has been a line of great interest in some quantum mechanical
applications. The solution of this equation for several non-central potentials has been
made by using some analytical methods such as classical trajectories for Hamilto-
nian systems with ring shaped potentials [32,33], SU(2) dynamical invariance algebra
for a generalized Aharonov–Bohm plus Coulomb system [34], classical and quan-
tum study of a generalized Kepler–Coulomb system [35,36], etc. . .. One of these
methods is developed by Nikiforov and Uvarov [37] as a new approach to the theory
of special functions. They succeeded in obtaining an unified integral representation
for functions of hypergeometric type. This type of hypergeometric equation with an
appropriate coordinate transformation is given as follows

ψ ′′(s)+ τ̃ (s)

σ (s)
ψ ′(s)+ σ̃ (s)

σ 2(s)
ψ(s) = 0 (5)

where σ(s) and σ̃ (s) are polynomials, at most second-degree, and τ̃ (s) is a first-
degree polynomial. The general view point of this paper is to present an analytical
solution of the angle-dependent part of the Schrödinger equation for an exactly solvable
angle-dependent potential Vθ (θ)/r2 and also to obtain modified � states of diatomic
molecules. The solution method developed by Nikiforov and Uvarov is used for solv-
ing the Schrödinger equation. The angle-dependent part of the Schrödinger equation is
investigated in detail to derive some analytical result and the solution of the radial part
of the associated equation for the Morse and Kratzer potentials is extracted from the
papers published previously [38,39]. The modified � state expressions for the Morse
and Kratzer potentials are obtained by connecting the results of the angle-dependent
part with the radial one. The modified � states of a number of neutral diatomic mole-
cules composed of a first-row transition metal and main-group elements are calculated
for both Morse and Kratzer potentials with an angle-dependent potential.

2 Separating variables of the Schrödinger equation in spherical coordinates

The starting point of this section is to separate the Schrödinger equation in spherical
coordinates for a diatomic molecule represented by a rotating potential model. After
separating the center of mass motion, the eigenvalue equation for a rotating motion
in spherical coordinates is solved by using the NU method and the energy levels of
the discrete spectrum are obtained for several diatomic molecules. In spherical coor-
dinates, the Schrödinger equation is written as follows:

{
− h̄2

2µ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂ϕ2

]}
	n�m(r)

+V (r)	n�m(r) = E	n�m(r). (6)

The energy E in Eq. 6 is real and it is either discrete for bound states (E < 0) or
continuous for scattering states (E > 0). Introducing a new variable x = cos2 θ , Eq. 6

123



1126 J Math Chem (2009) 46:1122–1136

can be explicitly turned into the more useful one:

{
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2

[
4x(1 − x)

∂2

∂x2 + 2(1 − 3x)
∂

∂x
+ 1

1 − x

∂2

∂ϕ2

]}
	n�m(r)

+2µ

h̄2 (E − V (r))	n�m(r) = 0. (7)

Consequently, this equation is separable for a potential of the following form,

V (r) = VM,K (r)+ 1

r2

[
Vθ (x)+ 1

1 − x
Vϕ(ϕ)

]
. (8)

If we write the wave function as 	n�m(r) = r−1 Rn�(r)
�m(θ)�m(ϕ), then the wave
equation in Eq. 7 with the potential in Eq. 8 is separated to a set of second-order
differential equations in all three coordinates as follows:

(
d2

dr2 − Eθ
r2 + 2µ

h̄2 (E − VM,K (r))

)
Rn�(r) = 0, (9)

(
4x(1 − x)

d2

dx2 + 2(1 − 3x)
d

dx
− Eϕ

1 − x
+ Eθ − 2µ

h̄2 Vθ (x)

)

�m(x) = 0, (10)

(
d2

dϕ2 − 2µ

h̄2 Vϕ(ϕ)+ Eϕ

)
�m(ϕ) = 0, (11)

where Eϕ and Eθ are the separation constants, which are real and dimensionless. Since
the wave function 	n�m(r) must be finite in all space for the bound states, the bound-
ary conditions for Eq. 9 require Rn�(0) = 0 and the square-integrability of Rn�(r)
on (0,∞), which implies that Rn�(∞) = 0. The finite solutions for 
�m(θ) in the
range 0 ≤ θ ≤ π are able to map into a differential equation of hypergeometric type.
Moreover, the boundary conditions for Eq. 11 must be �m(ϕ + 2π) = �m(ϕ). If
the azimuthal-dependent potential part Vϕ(ϕ) is set up to zero, then the normalized
solution of Eq. 11 that satisfies the boundary conditions becomes

�m(ϕ) = 1√
2π

eimϕ, m = 0,±1,±2, . . . , (12)

where one of the separation constants Eϕ represents m2, i.e., Eϕ = m2.

2.1 The solution of Eq. 10

It is well-known that the solution of the radial part of the Schrödinger equation gives
eigenvalues and eigenfunctions for a particle moving within the interaction potentials.
However, the solution of the angle-dependent part of the corresponding equation does
not depends on eigenvalues presented in the solution of the radial part explicitly. It
only exhibits a parameter relationship between contribution constants which come
from the θ -dependent part of the potential. Such a relationship can be expressed by
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solving Eq. 10 in terms of Eθ . Equation 10 can then be rewritten in the following form
by introducing an exactly solvable angle-dependent potential given in Eq. 4,

(
4x(1 − x)

d2

dx2 + 2(1 − 3x)
d

dx
− Eϕ

1 − x
+ Eθ −

(
A

1 − x
+ B

x

))

�m(x)= 0. (13)

An arrangement of the above equation turns to a convenient form to make a comparison
with the main equation of the NU method given in Eq. 5;

d2
�m(x)

dx2 + (1 − 3x)

2x(1 − x)

d
�m(x)

dx
+ 1

[2x(1 − x)]2

×
(
−Eθ x2 + x(Eθ − Ã + B)− B

)

�m(x) = 0, (14)

where Ã = m2 + A (keeping in mind the selection of Eϕ = m2). Having compared
Eq. 14 with Eq. 5, the following polynomial equalities are obtained immediately

τ̃ = 1 − 3x, (15)

σ = 2x(1 − x), (16)

σ̃ = −Eθ x2 + x(Eθ − Ã + B)− B. (17)

In the next step, the basic solution procedure of the NU method given in Ref. [38]
will be followed to find a solution of Eq. 14 in terms of Eθ . If polynomials given in
Eqs. 15–17 are substituted into Eq. 6 of Ref. [38], π function is obtained as follows

π = 1 − x

2
± 1

2

√
x2(4Eθ − 8k + 1)− x(4Eθ − 4 Ã + 4B − 8k + 2)+ 1 + 4B. (18)

The simplest form of π can be written

π = 1 − x

2
± 1

2

√
αx2 − βx + γ , (19)

where α = 4Eθ −8k +1, β = 4Eθ −4 Ã+4B −8k +2 and γ = 1+4B. The possible
solutions according to the plus and minus signs of Eq. 19 depend on the parameter k
within the square root sign. The expression under the square root has to be the square
of a polynomial, since π is a polynomial of degree at most 1. To satisfy this condition,
the discriminant of the expression within the square root must be set up to zero, i.e.,
� = β2 − 4αγ = 0. This identity leads to

(4Eθ − 4 Ã + 4B − 8k + 2)2 − 4(4Eθ − 8k + 1)(1 + 4B) = 0, (20)

and a second-order equation related to k is originated as follows

4k2 + 4k( Ã + B − Eθ )+ ( Ã − B)2 − 2Eθ ( Ã + B)+ E2
θ − Ã = 0. (21)
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Hence, the double roots of k are derived as

k1,2 = − ( Ã + B − Eθ )

2
± 1

2

√
Ã(1 + 4B). (22)

Substituting k1,2 into Eq. 18, the four possible solutions of π are obtained

π = 1 − x

2
± 1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
2
√

Ã − √
1 + 4B

)
x + √

1 + 4B
]
,

for k1 = − ( Ã+B−Eθ )
2 + 1

2

√
Ã(1 + 4B)

[(
2
√

Ã + √
1 + 4B

)
x − √

1 + 4B
]
,

for k2 = − ( Ã+B−Eθ )
2 − 1

2

√
Ã(1 + 4B)

(23)

where k1,2 is determined by means of the same procedure as in Ref. [38]. We have to
choose one of the four possible forms of π to obtain the bound state solutions. There-

fore, its most suitable form is established by π = 1−x
2 − 1

2

[(
2
√

Ã + √
1 + 4B

)
x−

√
1 + 4B

]
for k2 = − ( Ã+B−Eθ )

2 − 1
2

√
Ã(1 + 4B). The main requirement in the selec-

tion of this form is to find the negative derivative of τ(s) given by Eq. 9 of Ref. [38].
In that case, τ(s) and τ ′(s) are obtained, respectively,

τ(s) = 1 + √
1 + 4B − x

(
4 + 2

√
Ã + √

1 + 4B
)
,

τ ′(s) = −
(

4 + 2
√

Ã + √
1 + 4B

)
< 0. (24)

Another major polynomials given in the basic solution procedure of the NU method
are λ and λñ [37]. Both polynomials can be connected with each other by means
of Eqs. 7 and 8 of Ref. [38]. Hence, a polynomial of degree ñ is found by using
λñ = −ñτ ′ − ñ(̃n−1)

2 σ ′′;

λñ = 2ñ2 + 2ñ + 2ñ
√

Ã + ñ
√

1 + 4B, (̃n = 0, 1, 2, . . .) (25)

taking σ ′′ = −4. Moreover, λ is obtained from k2 + π ′;

λ = −1

2

√
1 + 4B

(
1 +

√
Ã
)

− 1

2

(
Ã + B − Eθ + 1

)
−

√
Ã (26)

After comparing Eq. 25 with Eq. 26 and also making some arrangements on the com-
parison, the separation constant Eθ is obtained as follows

(
2ñ +

√
Ã
)2 + 2

√
Ã + √

1 + 4B +
(

2ñ +
√

Ã
) √

1 + 4B + (1 + B) = Eθ . (27)
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It is very useful to prepare �̃(�̃+ 1) as a new presentation instead of Eθ . In this case,
Eq. 27 turns to

(
1/2+2ñ+

√
Ã+√

1/4+B
) (

1/2+2ñ+
√

Ã+√
1/4+B+1

)
= �̃(�̃+1), (28)

and it becomes in terms of �̃

�̃ =
(

1/2 + 2ñ +
√

Ã + √
1/4 + B

)
. (29)

The term �̃ in Eq. 29 can be named the “modified” orbital angular momentum, since
the contribution which comes from the angle-dependent potential damages the usual
orbital angular momentum �. Moreover, the result obtained in Eq. 29 is in agreement
with results on the more involved case of Ref. [40]. In the limiting case B = 0, the fac-

tor
√

1/4 + B in Eq. 29 should be replaced by ±1/2 so that Eq. 29 turns into ν+
√

Ã,
where ν = 1 + 2ñ for the odd functional solution or ν = 2ñ for the even functional
solution [41]. The parameter �̃ does not need to be integer. However, the difference
between the parameter �̃ and the square root terms in Eq. 29 have to be integer;

ñ = 1
2

{
�̃−

(
1/2 +

√
Ã + √

1/4 + B
)}
, ñ = 0, 1, 2, . . . (30)

where ñ corresponds to the number of quanta for oscillations.

2.2 The solution of Eq. 9

It is remarkable that the radial equation in Eq. 9 is independent of the angle-dependent
term given in Eqs. 2 and 3 for the Morse and Kratzer cases, respectively. Equation 9 is
exactly soluble by means of the NU method. However, some caution must be observed
especially on the solution of the Morse potential since the exponential nature of the
Morse potential and the radial behavior of the centrifugal kinetic energy term do not
allow for solving the Schrödinger equation simultaneously. In the case of Kratzer
potential, no caution is necessary when considering the Kratzer potential together
with the centrifugal term since both terms shows the radial behaviors. In the following
subsections, the solution of both potentials is briefly investigated by using the NU
method.

2.2.1 The Morse case

Adopting the Morse potential to Eq. 9, the radial Schrödinger equation turns into the
following form

(
d2

dr2 − Eθ
r2 + 2µ

h̄2

(
E − De

(
e−2a(r−re) − 2e−a(r−re)

)))
Rn�(r) = 0. (31)
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Disadvantage of Eq. 31 is that analytical solutions cannot be found because of the
centrifugal kinetic energy term of the potential proportional to Eθ /r2 is included into
the radial Schrödinger equation. In order to obtain an analytical solution of Eq. 31,
the term Eθ /r2 has to be approximated to the exponential one. Using an accurate
approximate treatment suggested by Pekeris [42], this term can be translated into the
following form

Eθ
r2

∼= Eθ
r2

e

(
D0 + D1e−arex + D2e−2arex

)
, (32)

where x is a coordinate transformation represented by (r − re)/re and Di is the coef-
ficients which are given in Eq. 18 of Ref. [38] (i = 0, 1, 2). Substituting Eq. 32 into
Eq. 31 and using a new variable of the form s = e−arex , the resulting Schrödinger
equation becomes

d2 Rn�(s)

ds2 + 1

s

d Rn�(s)

ds
+ 1

s2

[
−ε2

1 + ε2s − ε3s2
]

Rn�(s) = 0, (33)

where −ε2
1 = 2µ

(
E − Eθ D0

r2
e

)
/h̄2a2, ε2 = 2µ

(
2De − Eθ D1

r2
e

)
/h̄2a2 and ε3 = 2µ(

De − Eθ D2
r2

e

)
/h̄2a2. Comparing this equation with that of Eq. 21 of Ref. [38] and

following the solution steps of the NU method, the energy spectrum according to the
quantum numbers n, ñ and m is obtained as

Enñm = h̄2 Eθ
2µr2

e

(
1 − 3

are
+ 3

a2r2
e

)
− h̄2a2

2µ

[
Cñm −

(
n + 1

2

)]2

, (34)

where

Cñm = 1√
2µa2 De

h̄2 + a2 Eθ D2
r2

e

[
2µDe

h̄2 − Eθ
r2

e

(
2

are
− 3

a2r2
e

)]
, (35)

and Eθ is given by Eq. 28, keeping in mind Ã = m2 + A. The highest vibrational
quantum number nmax can be directly estimated from the condition dEnñm/dn = 0;

nmax = Cñm − 1

2
. (36)

nmax is generally limited to obtain the number of bound states in the case of the
Morse potential and its maximum value depends on the potential parameters of a
given diatomic molecule as well as the quantum numbers ñ and m.

2.2.2 The Kratzer case

Among many two-particle interaction models, one of the most interesting potential
types is the Kratzer potential because it can be exactly solved for the general case
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of rotation states different from zero. The first term on the right-hand side of Eq. 4
is the central Kratzer potential and the radial part of the Schrödinger equation in the
presence of this potential can be written as follows, recalling Eq. 9,

(
d2

dr2 − Eθ
r2 + 2µ

h̄2

[
E + De − De

(
r − re

r

)2
])

Rn�(r) = 0. (37)

Using the transformation s → r/re and letting the dimensionless notations

− ε2
1 = 2µr2

e E

h̄2 , ε2 = 4µDer2
e

h̄2 , ε3 = Eθ + 2µDer2
e

h̄2 , (38)

Equation 37 can be rewritten in a simple form as follows

d2 Rn�(s)

ds2 + 1

s2

(
−ε2

1s2 + ε2s − ε3

)
Rn�(s) = 0. (39)

The complete solution of Eq. 39 by means of the NU method can be found in Ref.
[39], after having made of some notation setting. Hence, the energy spectrum with
respect to the quantum numbers n, ñ and m is obtained as

Enñm = − h̄2

2µ

[(
4µDere

h̄2

)2 (
1 + 2n + √

1 + 4Dñm

)−2
]
, (40)

where

Dñm = 2µDer2
e

h̄2 +
(

1/2 + 2ñ +
√

m2 + A + √
1/4 + B

)

×
(

1/2 + 2ñ +
√

m2 + A + √
1/4 + B + 1

)
. (41)

The derivative of Eq. 41 according to n gives the maximum vibrational quantum num-
ber nmax in the case of Kratzer potential;

dEnñm

dn
=

8µD2
e r2

e
h̄2

(
1 + 2nmax + √

1 + 4Dñm
)3 = 0. (42)

The condition which requires to satisfy the equality on the right-hand side of Eq. 42
is that nmax must be supported by an infinite number of vibrational levels.

2.3 Remarks and calculations for the modified � states

In order to discuss the behavior of energy spectrums of a diatomic molecule when the
values of quantum numbers n, ñ and m differ, it is very useful to select some diatomic
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Table 1 Spectroscopic parameters and reduced masses for some diatomic molecules composed of a
first-row transition metal and main-group elements (H-F). The complete list of this table can be found
from Ref. [49]

Molecule De (eV) re (Å) ωe (cm−1) a (Å−1) µ (a.m.u) Reference

ScH 2.25 1.776 1572 1.41113 0.986040 [43]

TiH 2.05 1.781 1407 1.32408 0.987371 [43]

VH 2.33 1.719 1635 1.44370 0.988005 [43]

CrH 2.13 1.694 1647 1.52179 0.988976 [43]

MnH 1.67 1.753 1530 1.59737 0.989984 [43]

CuLi 1.74 2.310 392 1.00818 6.259494 [44]

TiC 2.66 1.790 592 1.52550 9.606079 [45]

NiC 2.76 1.621 874 2.25297 9.974265 [46]

ScN 4.56 1.768 726 1.50680 10.682771 [47]

ScF 5.85 1.794 713 1.46102 13.358942 [48]

molecules composed of a first-row transition metal and main-group elements (H-F).
One or two of these molecules are the first-row transition metal hydrides such as ScH,
TiH, VH, CrH and MnH [43]. Transition metal hydrides are chemical compounds
formed when hydrogen gas reacts with transition metal atoms. These are of consid-
erable importance in chemical synthesis as intermediates and in solid matrix samples
for infrared spectroscopic study. Another diatomic molecule containing the transition
metal element copper (Cu) and the main group element lithium (Li) is CuLi, which
elucidates the nature of the bonding in mixed transition metal lithides [44]. Presently
the transition metal carbide molecules such as TiC and NiC represent a very active field
of research, especially due to the desire for a quantitative understanding of their chem-
ical bonds [45,46]. Moreover, diatomic scandium nitride molecule ScN has excellent
physical properties of high temperature stability as well as electronic transport prop-
erties, which are typical of transition metal nitride [47]. Furthermore, the scandium
fluoride molecule ScF is the best studied transition metal halide and it has been fairly
well characterized [48]. Diatomic molecules which consist of transition metal and
main group elements are challenging theoretically and computationally, but recent
advancements in computational methods have made such molecules more accessible
to investigations. Their spectroscopic parameters have been accurately determined by
using ab-initio calculations. One of these calculations is called the multi-configuration
self-consistent field (MCSCF) and it seems qualitatively correct. In Table 1, the spec-
troscopic parameters of the above mentioned diatomic molecules are summarized
using MCSCF results [49]. However, choice of the parameter a is not a simple issue.
Solution of the Schrödinger equation for the Morse potential gives the following well-
known relation (see p.132 of Ref. [25]);

a = ωe

2re
√

Be De
, (43)
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Table 2 The variation of bound state energies (in eV) for various values of n, ñ, m, A and B

Molecule n ñ m Morse potential Kratzer potential

A = 1 A = 1 A = 9 A = 1 A = 1 A = 9

B = 9 B = 1 B = 1 B = 9 B = 1 B = 1

ScH 0 0 0 −2.13697 −2.14733 −2.13645 −2.19509 −2.20526 −2.19459

1 1 0 −1.93560 −1.95052 −1.93490 −2.10731 −2.12154 −2.10665

3 2 1 −1.56637 −1.58578 −1.56832 −1.95151 −1.96918 −1.95327

3 3 2 −1.53010 −1.55582 −1.53794 −1.91920 −1.94202 −1.92611

5 4 3 −1.17869 −1.20852 −1.19224 −1.76519 −1.79029 −1.77652

5 5 4 −1.12534 −1.16101 −1.14521 −1.72169 −1.75058 −1.73769

TiH 0 0 0 −1.94719 −1.95748 −1.94668 −1.99713 −2.00721 −1.99663

1 1 0 −1.76538 −1.78019 −1.76469 −1.91331 −1.92738 −1.91266

3 2 1 −1.43216 −1.45141 −1.43409 −1.76537 −1.78272 −1.76710

3 3 2 −1.39624 −1.42170 −1.40400 −1.73372 −1.75607 −1.74048

5 4 3 −1.07703 −1.10651 −1.09041 −1.58802 −1.61244 −1.59903

5 5 4 −1.02440 −1.05957 −1.04398 −1.54584 −1.57383 −1.56133

VH 0 0 0 −2.21203 −2.22307 −2.21148 −2.27210 −2.28293 −2.27156

1 1 0 −2.00226 −2.01816 −2.00153 −2.17978 −2.19492 −2.17908

3 2 1 −1.61793 −1.63859 −1.62000 −2.01624 −2.03499 −2.01810

3 3 2 −1.57935 −1.60671 −1.58769 −1.98197 −1.07718 −1.98929

5 4 3 −1.21343 −1.24513 −1.22783 −1.82048 −1.84705 −1.83247

5 5 4 −1.15677 −1.19465 −1.17787 −1.77450 −1.80503 −1.79140

CrH 0 0 0 −2.01092 −2.02226 −2.01036 −2.07289 −2.08400 −2.07234

1 1 0 −1.80031 −1.81659 −1.79956 −1.96202 −1.98219 −1.96113

3 2 1 −1.41769 −1.43870 −1.41980 −1.8247 −1.84369 −1.82659

3 3 2 −1.37846 −1.40627 −1.38694 −1.79010 −1.81452 −1.79749

5 4 3 −1.01871 −1.05067 −1.03322 −1.63474 −1.66128 −1.64671

5 5 4 −0.96162 −0.99978 −0.98287 −1.58901 −1.61934 −1.60579

MnH 0 0 0 −1.55956 −1.57012 −1.55904 −1.61987 −1.63018 −1.61936

1 1 0 −1.36574 −1.38081 −1.36504 −1.54231 −1.55656 −1.54165

3 2 1 −1.01943 −1.03864 −1.02136 −1.40762 −1.42489 −1.40934

3 3 2 −0.98358 −1.00900 −0.99133 −1.37632 −1.39839 −1.38298

5 4 3 −0.66694 −0.69570 −0.68000 −1.24530 −1.26892 −1.25593

5 5 4 −0.61561 −0.64992 −0.63471 −1.20492 −1.23166 −1.21969

CuLi 0 0 0 −1.71422 −1.71519 −1.71417 −1.72804 −1.72901 −1.72799

1 1 0 −1.66482 −1.66626 −1.66475 −1.70610 −1.70752 −1.70603

3 2 1 −1.56867 −1.57064 −1.56886 −1.66395 −1.66586 −1.66414

3 3 2 −1.56497 −1.56759 −1.56577 −1.66038 −1.66291 −1.66115

5 4 3 −1.46933 −1.47256 −1.47080 −1.61763 −1.62070 −1.61903

5 5 4 −1.46352 −1.46741 −1.46569 −1.61213 −1.61581 −1.61419

TiC 0 0 0 −2.62172 −2.62278 −2.62167 −2.61837 −2.61941 −2.61832

1 1 0 −2.54773 −2.54930 −2.54766 −2.59060 −2.59213 −2.59052
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Table 2 continued

Molecule n ñ m Morse potential Kratzer potential

A = 1 A = 1 A = 9 A = 1 A = 1 A = 9

B = 9 B = 1 B = 1 B = 9 B = 1 B = 1

3 2 1 −2.40344 −2.40559 −2.40366 −2.53690 −2.53898 −2.53711

3 3 2 −2.39942 −2.40228 −2.40029 −2.53301 −2.53577 −2.53385

5 4 3 −2.25676 −2.26028 −2.25836 −2.47861 −2.48196 −2.48013

5 5 4 −2.25042 −2.25467 −2.25279 −2.47257 −2.47661 −2.47482

NiC 0 0 0 −2.70409 −2.70533 −2.70402 −2.74321 −2.74445 −2.74315

1 1 0 −2.59598 −2.59781 −2.59589 −2.71217 −2.71398 −2.71208

3 2 1 −2.38692 −2.38942 −2.38717 −2.65228 −2.65473 −2.65252

3 3 2 −2.38223 −2.38556 −2.38325 −2.64768 −2.65094 −2.64868

5 4 3 −2.17893 −2.18301 −2.18079 −2.58698 −2.59093 −2.58878

5 5 4 −2.17157 −2.17650 −2.17432 −2.57987 −2.58463 −2.58252

ScN 0 0 0 −4.51353 −4.51451 −4.51348 −4.54157 −4.54255 −4.54152

1 1 0 −4.42292 −4.42437 −4.42285 −4.50668 −4.50812 −4.50662

3 2 1 −4.24493 −4.24693 −4.24513 −4.43862 −4.44058 −4.43881

3 3 2 −4.24119 −4.24385 −4.24200 −4.43494 −4.43755 −4.43573

5 4 3 −4.06444 −4.06774 −4.06594 −4.36611 −4.36932 −4.36757

5 5 4 −4.05850 −4.06248 −4.06072 −4.36033 −4.36420 −4.36249

ScF 0 0 0 −5.80466 −5.80542 −5.80462 −5.83194 −5.83270 −5.83190

1 1 0 −5.71576 −5.71689 −5.71571 −5.79735 −5.79848 −5.79730

3 2 1 −5.54042 −5.54198 −5.54057 −5.72950 −5.73104 −5.72965

3 3 2 −5.53749 −5.53957 −5.53813 −5.72661 −5.72866 −5.72723

5 4 3 −5.36298 −5.36556 −5.36415 −5.65811 −5.66064 −5.65926

5 5 4 −5.35832 −5.36144 −5.36006 −5.65355 −5.65660 −5.65525

where Be = hc
8π2µc2r2

e
. Notice that the parameter a is used to calculate the energy spec-

trum of the Morse potential. Another considerable effort for the Morse potential is that
the highest vibrational quantum number nmax changes according to the spectroscopic
parameters of diatomic molecules as well as the parameters ñ, m, A and B, keeping
in mind Eq. 36. As an example, the value of nmax for ScH is 20 in the fixed values
of A = 1 and B = 9 and under the conditions of ñ ≤ 10 and m ≤ 10. The values
of nmax for TiH, VH, CrH, MnH, CuLi, TiC, NiC, ScN and ScF molecules given in
Table 1 are aligned 20, 20, 17, 14, 70, 71, 50, 100 and 131, respectively, in the same
values of parameters and conditions.

To calculate the bound state energies of diatomic molecules given in Table 1, Eqs. 34
and 40 must be recalled for the Morse and Kratzer cases, respectively. Taken into
account spectroscopic parameters of diatomic molecules and arbitrary values of A
and B, the bound state energies can be compared for both potentials. This type of
comparison is given in Table 2. As can be seen from Table 2, when parameters A and
B are fixed to 1 and 1, respectively, for different values of n, ñ and m, the bound state
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energies become lower than that of other values. A comparison of A = 1 and B = 9
with A = 9 and B = 1 shows that the bound state energies obtained for A = 1 and
B = 9 are a little smaller than the energies obtained for A = 9 and B = 1 in small
values of n, ñ and m, especially 0 and 1. For large values of the quantum numbers, the
bound state energies obtained for A = 9 and B = 1 tend to become more separately
spaced than the energies obtained for A = 1 and B = 9.

3 Conclusions

An interesting extension of this work is to study the effect of an angle-dependent
potential to the Morse and Kratzer potentials and to examine the partial changes on the
usual � states. The analysis presented in this work suggests that the bound state energies
of diatomic molecules depend on the quantum numbers n, ñ, m and also the parameters
A and B. Moreover, the energy spectrum obtained in Eq. 34 is an approximate descrip-
tion of the quantum aspects of diatomic molecules for the Morse potential together
with angle-dependent potential while the spectrum obtained in Eq. 40 is a complete
description for the Kratzer potential together with angle-dependent potential. Further-
more, the solution procedure presented in this paper is also systematical and efficient
for solving the angle-dependent part of the Schrödinger equation.
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